Электрическое разделение цепей
Ранее существовал термин «электрическое разделение сети». Электрическое разделение сети (ГОСТ 12.1.009) это разделение электрической сети на отдельные электрически не связанные между собой участки с помощью разделяющего трансформатора. Разделяющий трансформатор (ГОСТ 12.1.009) это специальный трансформатор, предназначенный для отделения приемника энергии от первичной электрической сети и сети заземления.
В настоящее время применяется понятие «электрическое разделение цепей». В соответствии с Правилами устройства электроустановок (ПУЭ 7, ТКП 339-2011), защитное электрическое разделение цепей – отделение одной электрической цепи от других цепей в электроустановках напряжением до 1 кВ с помощью: двойной изоляции; основной изоляции и защитного экрана; усиленной изоляции. Питание отделяемой цепи должно быть выполнено от разделительного трансформатора, соответствующего ГОСТ 30030 «Трансформаторы разделительные и безопасные разделительные трансформаторы», или от другого источника, обеспечивающего равноценную степень безопасности.
В соответствии с Правилами устройства электроустановок (ПУЭ 7, ТКП 339-2011), защитное электрическое разделение цепей следует применять, как правило, для одной цепи. Наибольшее рабочее напряжение отделяемой цепи не должно превышать 500 В.
В каком случае применяется данная защитная мера!?
Согласно Правилам устройства электроустановок (ПУЭ 7, ТКП 339-2011), электрическое разделение цепей может быть использовано в качестве одной из возможных мер защиты при косвенном прикосновении, если время автоматического отключения питания не удовлетворяет условиям для системы TN (таблица 1) и для системы IT (таблица 2).
Талица 1 – Наибольшее допустимое время защитного автоматического отключения для системы TN
Номинальное фазное напряжение U0, В | Время отключения, с |
127 | 0,8 |
220 | 0,4 |
380 | 0,2 |
Более 380 | 0,1 |
Талица 2 – Наибольшее допустимое время защитного автоматического отключения для системы IT
Номинальное фазное напряжение U0, В | Время отключения, с |
220 | 0,8 |
380 | 0,4 |
660 | 0,2 |
Более 660 | 0,1 |
Какой принцип действия данной защитной меры?!
Рассмотрим случай прикосновения человека к фазному проводу в трехфазной четырехпроводной сети.

Рисунок 1 - Прикосновение человека к фазному проводу трехфазной четырехпроводной сети
В общем случае, ток проходящий через тело человека будет определяться по формуле

где UФ – фазное напряжение сети; YА, YB, YC, YN – проводимость фазных и нулевого проводов относительно земли; YН – проводимость нейтрали источника питания относительно земли; Yh – проводимость тела человека.





RА, RB, RC, RN – активные сопротивления фазных и нулевого проводов относительно земли; RН – активное сопротивление нейтрали источника питания относительно земли; CА, CB, СC, CN – емкость фазных и нулевого проводов относительно земли; LН – индуктивность нейтрали источника питания относительно земли; а – фазный оператор трехфазной системы, учитывающий сдвиг фаз,

Как видно из приведенных выше выражений, значение тока через тело человека определяется активным сопротивлением изоляции и емкостью сети.
Факторы, влияющие на сопротивление изоляции следующие:
- Влажность – чем выше, тем сопротивление изоляции меньше.
- Длина линии питания – чем больше, тем сопротивление изоляции меньше.
- Материал изоляции провода (например, у резиновой изоляции – сопротивление больше, чем у виниловой при прочих равных условиях).
- Время эксплуатации – чем дольше эксплуатируется линия, тем меньше сопротивление изоляции.
- Толщина изоляции – чем больше, тем сопротивление изоляции больше.
Минимальное нормированное значение сопротивления изоляции зависит от типа элемента электрической сети (кабель, двигатель, трансформатор и т.п.). Например, сопротивление изоляции силового кабеля до 1000 В должно быть не меньше 0,5 МОм.
Емкость фаз относительно земли не зависит от каких-либо дефектов, она определяется конструктивными особенностями электрической сети: общей протяженностью сети, высотой подвеса проводов воздушной сети, толщиной фазной изоляции жил кабеля и т.п. Поэтому емкость сети не может быть снижена. В процессе эксплуатации емкость сети изменяется лишь за счет отключения и включения отдельных линий, что определяется требованиями электроснабжения. Величина удельной емкости сети относительно земли, для кабельных линий составляет 0,1-0,4 мкФ/км, а для воздушных 0,005·мкФ/км. Емкость фаз возрастает с увеличением протяженности и разветвлённости сети.
Проведем анализ влияния сопротивления изоляции трехфазной четырехпроводной электрической сети 380/220 В с изолированной нейтралью на значение тока протекающего через тело человека при прикосновении к фазному проводу для разных значений протяженности сети. Удельную емкость электрической сети примем 0,3 мкФ/км. При расчетах токов сопротивление тела человека будем моделировать резистором со значением сопротивления 1000 Ом.
Результаты расчетов в программе MathCAD приведены ниже.

Рисунок 2 - Зависимость значения тока протекающего через тело человека от удельного сопротивления изоляции (при протяженности электрической сети 10 км)

Рисунок 3 - Зависимость значения тока протекающего через тело человека от удельного сопротивления изоляции (при протяженности электрической сети 1 км)

Рисунок 4 - Зависимость значения тока протекающего через тело человека от удельного сопротивления изоляции (при протяженности электрической сети 0,1 км)

Рисунок 5 - Зависимость значения тока протекающего через тело человека от удельного сопротивления изоляции (при протяженности электрической сети 0,01 км)
Вывод:
1. В протяженных электрических сетях с изолированной нейтралью опасность поражения выше, так как больше значение тока протекающего через человека при его прикосновении к фазному проводнику.
2. В протяженных трехфазных четырехпроходных электрических сетях с изолированной нейтралью защитная роль изоляции электрической сети снижается. Увеличение сопротивления изоляции не приводит к уменьшению тока протекающего через тело человека при его прикосновении к фазному проводнику.
3. Уменьшение протяженности электрической сети, за счет разделения на отдельные не связанные между собой электрически участки малой протяженности, ведет к снижению опасности поражения электрическим током.
Как выполняется электрическое разделение сети?
Для выполнения электрического разделения сети электроприемник подключается через разделяющий (разделительный) трансформатор.
Разделительный трансформатор (в соответствии с ГОСТ 30030-93) – трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками с целью исключения опасности, обусловленной возможностью случайного одновременного прикасания к земле и токоведущим частям или нетоковедущим частям, которые могут оказаться под напряжением в случае повреждения изоляции.
Безопасный разделительный трансформатор – разделительный трансформатор, предназначенный для питания цепей сверхнизким безопасным напряжением.
Вторичную обмотку трансформатора и корпус электроприемника не заземляют. Корпус разделяющего трансформатора может заземляться или зануляться, как обычно (трансформаторы класса I) или незаземляться (трансформаторы класса II и III). Вторичное напряжение разделительных трансформаторов не должно превышать 1000 В, для безопасных разделительных трансформаторов – 50 В.

Рисунок 6 - Схема включения разделяющего трансформатора
При случайном прикосновении к фазному проводнику во вторичной цепи не создается опасности поражения электрическим током, поскольку протяженность вторичной цепи мала.